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Optimizing the Efficiency of Weighted Voting Games

Pavel Doležel∗

Abstract Having a group of voters endowed with weights, the simple weighted voting game (or
system) represents a system of approving propositions in which the approved is only a proposi-
tion that is accepted by voters weighted to a number that is at least equal to a prescribed number
called a quota. We call the system simple if there is only one set of weights and one quota,
as opposed to the multi-rule systems that have more weights assigned to each voter and with
more quotas. This paper presents an analysis of the efficiency of simple weighted voting sys-
tems. It assumes the Impartial Anonymous Culture (the probability of a single voter voting for
a proposition is 1/2 and voters act independently). This culture is used for the general evalua-
tion of voting systems, when no specific information about propositions and voters’ preferences
are known, or when the voters’ preferences and proposition characteristics are not willing to be
reflected in the voting system itself, keeping in mind its non-pragmatics, fairness and generality.
The efficiency of a simple weighted voting system is defined as the probability of a proposition
being approved. This paper focuses on efficiency maximization and minimization with respect
to weights. We prove a theorem which enables the computing of the efficiency maximum and
efficiency minimum with respect to weights, given the number of voters and quota in linear time.

Keywords Weighted voting game, integer programming, efficiency of voting, IAC models
JEL classification D71, D72 ∗

1. Introduction

Voting systems are systems transforming many individual preferences into one. By
simple weighted voting system we mean a voting system that processes a proposition
and assigns the proposition a single value: accepted or rejected. If accepted, the propo-
sition is applied and changes the status quo. If rejected, it is not applied and does not
change the status quo. The proposition is accepted within the system if, and only if,
the sum of weights that are assigned to all the voters who accept the proposition is
at least equal to a prescribed real number called the quota. For simplicity we assume
that all the weights are real numbers between 0 and 1 (including both) and in addition
the weights add up to 1 (each simple weighted voting system can be normalized in
this way). Simple weighted voting systems are used in various institutions all around
the world, including parliamentary and legislative institutions, United Nations insti-
tutions, European institutions, general committees of shareholders, Academy Award
committees, the Nobel prize committee, governments at the national, district or city
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level, executive boards of national banks, courts of law, housing associations and many
other institutions. Voting plays a crucial role not only in political markets, but also
in traditional economic and financial markets, since political decisions largely impact
consumption, investment, inflation, unemployment and overall economic performance
through fiscal and monetary policies. For the use of weighted voting systems in inter-
national organizations, see for example McIntyre (1954).

We consider two types of propositions: The first type we call simple, the second we
call complex. Simple propositions are all those that can be inverted to their opposite.
This means they specify such a change that admits only one alternative proposition.
This alternative contradicts the original one proposed. An example of a simple propo-
sition is one concerned with entering the European Union, as the only alternative to
entering is not entering. For simple propositions there are generally only two states of
nature. On the other hand, complex propositions have many alternatives. An example
of a complex proposition is changing a tax law, as the proposed change usually has
many alternatives that cannot be proposed individually. Assume the law to be very
simple, stating that the tax for individuals is 20% of their income. Then there is no
single proposition on tax law in contradiction with the original. The tax rate can be
25% or 15%. Both these tax rates are possible alternative propositions in contradiction
with the 20% tax rate. Hence the proposition on the tax rate is a complex proposition.
In other words, simple propositions are those dealing with changes that admit only two
states of nature and complex propositions are those which admit at least three.

The reason for distinguishing simple and complex propositions is to avoid objec-
tions concerning simple weighted voting systems with quotas under one half, which we
admit. Sometimes there are complaints that once a proposition is rejected, its oppo-
site should be accepted under the same voting system. This simple behavior is clearly
not assured for quotas below one half. However, these objections are relevant only
for simple propositions, since for a complex proposition there is no single opposite
proposition and so once a complex proposition is rejected, some of its contradictory
propositions might be rejected as well under the same preference setting. Additionally
in some cases, only certain types of propositions can be processed under the weighted
voting system with a quota lower than one half—for example in a general assembly
of stock holders or in bankruptcy proceedings.1 In many codes of rules over pub-
lic and private associations or political parties, the most powerful authority (usually a
congress, convention or assembly of all members) can be convened by less than half of
all the members. Although, to convene an authority may not be considered approving
a proposition, it actually is an approval process changing the status quo. An important
role the quotas below one half also play in the multi-rule voting systems, where more
than just one rule must be fulfilled for a coalition to win. For example, consider a
union of 10 countries, where two of them are very large and, based on their population,
they would be the majority on their own. But, such a union is hardly acceptable for
the other 8 countries, which would have no practical power in the union under the pop-
ulation majority rule. For such a union it might be useful, aside from the population

1 Under Czech bankruptcy law, a creditor assembly can be convened when supported by at least two creditors
with at least a 10% share of the total value of all submitted receivables, i.e. the quota is 0.1.
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rule, to apply another rule requiring (for example) at least 4 countries to accept the
proposition for it to be approved. The quota would then be 0.4 in this rule and it makes
sense to apply it. This reasoning leads us to admit all possible quotas between 0 and 1.

Weights can represent the share of mandates in some voting bodies, the shares of
property values of stock holders or creditors, the populations of countries in suprana-
tional institutions, and the populations of counties or districts in national institutions.2

If we wish to study the voting systems themselves, while not having any informa-
tion about the preferences of single voters, parties or voting countries, the natural way
would be to assign each voter a theoretical probability of accepting any proposition.
We call it the ”probability of acceptance”. This probability is considered to be the same
for all voters, since we do not have any information about future propositions. Having
no such information about the propositions and voters’ preferences, it is natural to as-
sume this probability is 0.5 and the voters act independently. Putting these assumptions
together is often called an IAC (Impartial Anonymous Culture) assumption.

The probability of a proposition being approved we call the “probability of ap-
proval”. We will study the probability of approval (which we will also call “an effi-
ciency of the voting system”) under the IAC assumption, since it is one of the major
characteristics of a voting procedure itself. This efficiency is also known in the litera-
ture as the Coleman index or the power of a collectivity to act, and has been introduced
in Coleman (1971) and used in Leech (2002), for example. A slight generalization of
the Coleman index is studied in Lindner (2008). The Coleman index can be considered
an a priori voting power assigned to each voter.

We are interested in the behavior of a simple weighted voting system efficiency as
a function of weights and quota. The questions we raise and answer are:

(i) What are the minima and maxima of the efficiency function with respect to the
weights and can they be expressed analytically in terms of quota and number of
voters?

(ii) Is the efficiency function symmetric around the quota equal to one half?

(iii) Are there any intervals in which the quota can move freely so that the effi-
ciency maximum (resp. efficiency minimum) with respect to the weights does
not change? If so, how they can be formally described?

(iv) How many different values can the efficiency maximum, resp. efficiency min-
imum, attain in terms of the number of voters? Can this number be expressed
explicitly as a function of n?

The concept of efficiency is quite clear, but the problem of computing the exact
efficiency of a simple weighted voting system is the time complexity. This was shown
to be an NP-complete problem, see Matsui and Matsui (2000, 2001) or Prasad and
Kelly (1990). We do not study multi-rule voting systems—see for example Leech et
al. (2007), Leech and Aziz (2008) or Leech (2002)—as it would not bring any further
significant insight to our analysis. For further information on weighted voting systems

2 For example, in the Lower House of the Czech Parliament, the shares of mandates assigned to districts
depend upon the number of valid votes cast in each district.
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and their efficiency, see Hosli (2008) (balancing legitimacy and efficiency), Zucker-
man et al. (2008) (theoretical analysis of individual voting power), Aziz and Paterson
(2008) (survey on computationally tractable weighted voting systems) and Felsenthal
and Machover (1998). In the article from Felsenthal and Machover (2004), the authors
defend the concept of a priori voting power opposing some of the objections being
made to this concept by explicitly stating: “The main purpose of measuring a priori
voting power is not descriptive but prescriptive; not empirical but normative. It is in-
dispensable in the proper constitutional design and assessment of decision rules. Here,
it is important to quantify the voting power each member is granted by the rule itself.”
Some further findings of computationally favorable assumptions for the Banzhaf power
index computations can be found in Algaba et al. (2003).

2. Base concepts

Suppose we have a set N = {1, . . . ,n} , n ∈ N. This set will represent the set of voters
(voting bodies, parties, countries, etc.), so that each voter is represented by just one
index from N. We will not consider the elements of N to be further divisible. Suppose
a vector space Vn above the field of real numbers and the set Sn ⊂ Vn of all vectors
w = (w1, . . . ,wn) , such that ∑

n
k=1 wk = 1 and wk ≥ 0 for any k ∈ {1, . . . ,n} . The set of

all real numbers between 0 and 1 (including both) we denote Λ. The ordered couples
(λ ,w)∈Λ×Sn we call committees. The vector w from Sn we call a vector of weights,
and the number λ from Λ we call a quota. Suppose an n-dimensional unit cube and
denote the set of all its vertices Cn, i.e. Cn = {(c1, · · · ,cn) : ci ∈ {0,1} , i ∈ {1, ...,n}} .
The cardinality of Cn is clearly 2n. A proposition is approved if, and only if, the sum
of the weights of those voters who accept the proposition is greater than or equal to the
quota, i.e.:

n

∑
k=1

wici ≥ λ , (1)

where c = (c1, . . . ,cn)∈Cn is defined as ci = 0 if the i-th voter rejected the proposition
and ci = 1 if he or she approved it. We call a coalition any subset Q of N such that
j ∈Q⇔ c j = 1. Each c∈Cn represents just one coalition. We say, the coalition Q⊂N
is winning, when (1) and j ∈ Q⇔ c j = 1 are fulfilled. The efficiency of a committee
(λ ,w) ∈ Λ×Sn is defined as the number of winning coalitions divided by the number
of all possible coalitions:

ε (λ ,w) = ∑c∈Cn I [∑n
i=1 wici ≥ λ ]
2n , (2)

where the I [A] is the identifier of A, i.e. I [A] = 1 if, and only if, condition A is true,
I [A] = 0 otherwise.

We are interested in finding the maximum efficiency (resp. minimum efficiency)
with respect to the weights given the quota and number of voters. So we are searching
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for mn
λ

and τn
λ

given by (3) and (4):

mn
λ

:= max
w∈Sn

ε (λ ,w) , (3)

τ
n
λ

:= min
w∈Sn

ε (λ ,w) . (4)

3. Basic findings

Lemmas 1 and 2 are simple observations that we provide without rigorous proof and
which provide us with the efficiency maxima and minima for certain quotas without
any computations.

Lemma 1. The maximum efficiency for a quota higher than 1
2 is 1

2 for any size com-
mittee n≥ 2.

Lemma 2. The minimum efficiency for a quota lower than 1
2 is 1

2 for any size committee
n≥ 2.

Lemma 3 is used in the proof of Lemma 5. For many quotas it enables the lowering
of the number of computations needed to be performed in order to find the efficiency
maximum, resp. efficiency minimum.

Lemma 3. Let n≥ 2, w = (w1, . . . ,wn) and 0 < λ ≤ 1. Then at least

max
{

0,n−
⌊

1
λ

⌋}
weights from the set {w1, . . . ,wn} are lower than λ for any set of weights.

Proof. There are two possibilities:

(i) n≤ b1/λc. We have 1/n≥ λ/(b1/λcλ ) = λ/(1− p), where λ > p≥ 0 and hence
1/n ≥ λ . So, there exists such a set of weights where none is lower than λ . These
weights are, for example, the weights (1/n, . . . ,1/n) . This is consistent with the state-
ment as max{0,n−b1/λc}= 0.

(ii) n > b1/λc. We will verify the proof by contradiction. Assume that the statement
of the lemma does not hold. There would be exactly n−b1/λc−m weights lower
than λ , for some m such that 0 < m ≤ n−b1/λc , m ∈ N. Then there must be exactly
b1/λc+ m weights higher than or equal to λ , and for the sum W of all these weights
that are higher than or equal to λ must hold:

W ≥ λ

(⌊
1
λ

⌋
+m

)
≥ λ

(⌊
1
λ

⌋
+1
)
≥ 1− p+λ > 1,

because λ b1/λc = 1− p, where 0 ≤ p < λ . But this is simply in contradiction with
∑

n
i=1 wi = 1, wi ≥ 0. Hence the statement of the lemma must hold. �

310 AUCO Czech Economic Review, vol. 5, no. 3



Optimizing the Efficiency of Weighted Voting Games

4. Maximizing and minimizing efficiency with respect to weights

The following theorem can be used for maximum and minimum efficiency computa-
tions, given the quotas and numbers of voters.

Theorem 1. Suppose n∈N, λ ∈Λ and w∈ Sn. Then the maximum as well as minimum
of the voting efficiency ε (λ ,w) is attained in at least one of the points from the set:

λ ,

1
n
, . . . ,

1
n︸ ︷︷ ︸

n−times


 ,

λ ,

0,
1

n−1
, . . . ,

1
n−1︸ ︷︷ ︸

(n−1)−times


 , . . . ,

λ ,

 0, . . . ,0︸ ︷︷ ︸
(n−2)−times

,
1
2
,

1
2


 ,

λ ,

 0, . . . ,0︸ ︷︷ ︸
(n−1)−times

,1



 (5)

The cardinality of this set is n.

Proof. At first we express the problem as a maximization problem of integer pro-
gramming:

max
d∈R2n

,w∈Rn
1Td+0Tw (6)

subject to :

1̄Tw = 1 (7)

di
(
wTci−λ

)
≥ 0 (8i)

for all i ∈ {1, . . . ,2n}
w≥ 0 (9)
w1 ≤ w2 ≤ . . .≤ wn (10)

d ∈ {0,1}2n
(11)

where 1 is an 2n×1-type vector of ones, 1̄ is an n×1-type vector of ones, w is an n×1-
type vector of real numbers, d is an 2n×1-type vector of real numbers and 0≤ λ < 1
is a real number, and ci stands for the vector representing a vertex of an n-dimensional
unit cube such that ci 6= c j ⇔ i 6= j, for any i, j ∈ {1, . . . ,2n} . By changing condition
(11) to d ∈ [0,1]2

n
(which we denote (11’)), we enlarge the set of all feasible solutions,

but the optimal solution (d∗,w∗) remains the same for whatever i ∈ {1, . . . ,2n}. If
0 < d∗i < 1, then the value of the objective function would increase when shifting the
value of d∗i to 1 while all the conditions hold (because 0 < d∗i , we also have w∗Tci ≥ λ

and so (8i) holds). Therefore, whenever 0 < d∗i < 1, the solution (d∗,w∗) cannot be
optimal. Let’s denote F the set of all feasible solutions—i.e. all the vectors (d,w) , for
which the conditions (7), (8i) for all i ∈ {1, . . . ,2n} , (9), (10) and (11’) hold. Now we
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prove the set F is convex. Assume, we have two different vectors from F , let’s denote
them

(
d(1),w(1)

)
and

(
d(2),w(2)

)
. We need to show that

α

(
d(1),w(1)

)
+(1−α)

(
d(1),w(1)

)
∈ F .

We easily confirm this fact by checking that the set given by each single constraint3 is
convex and use the fact, that any intersection of a finite number of convex sets is also a
convex set.

(i) For vectors fulfilling (7):

The set of all vectors (d,w) ∈ R2n+n which are given by (7) is convex since
having any two different vectors

(
d(1),w(1)

)
and

(
d(2),w(2)

)
, for which

n

∑
j=1

w(1)
j = 1 and

n

∑
j=1

w(2)
j = 1

we have for any real 0≤ α ≤ 1

αw(1) +(1−α)w(2) = α

(
w(1)−w(2)

)
+w(2)

and so
1T
[
α

(
w(1)−w(2)

)
+w2

]
= α−α +1 = 1.

So each convex combination of any two vectors from F fulfilling (7) also fulfills
(7) as well.

(ii) For vectors fulfilling (8i):

The set of all vectors (d,w) ∈ R2n+n which are given by (8i) is convex, because
having any two different vectors

(
d(1),w(1)

)
and

(
d(2),w(2)

)
, for which

d(1)
i

(
n

∑
j=1

w(1)
j ci

j−λ

)
≥ 0 and d(2)

i

(
n

∑
j=1

w(2)
j ci

j−λ

)
≥ 0

we have for any real 0≤ α ≤ 1

(
αd(1)

i +(1−α)d(2)
i

)[ n

∑
j=1

(
αw(1)

j +(1−α)w(2)
j

)
ci

j−λ

]
=

αd(1)
i

[
n

∑
j=1

(
αw(1)

j

)
ci

j−αλ

]
+(1−α)d(2)

i

[
n

∑
j=1

(
(1−α)w(2)

j

)
ci

j− (1−α)λ

]
+

3 Each single constraint from the set of constraints {(7),{(8i), i ∈ {1, . . . ,2n}} , (9), (10), (11’)}.

312 AUCO Czech Economic Review, vol. 5, no. 3



Optimizing the Efficiency of Weighted Voting Games

αd(1)
i

n

∑
j=1

(1−α)w(2)
j ci

j +(1−α)d(2)
i

n

∑
j=1

αw(1)
j ci

j =

α
2d(1)

i

[
n

∑
j=1

w(1)
j ci

j−λ

]
︸ ︷︷ ︸

≥0

+(1−α)2 d(2)
i

[
n

∑
j=1

w(2)
j ci

j−λ

]
︸ ︷︷ ︸

≥0

+

αd(1)
i

n

∑
j=1

(1−α)w(2)
j ci

j︸ ︷︷ ︸
≥0

+(1−α)d(2)
i

n

∑
j=1

αw(1)
j ci

j︸ ︷︷ ︸
≥0

≥ 0.

Hence each convex combination of any two vectors from F fulfilling (8i) fulfills
(8i) as well.

(iii) For vectors fulfilling (9):

The set of all vectors (d,w) ∈ R2n+n which are given by (9) is convex, because
any convex combination of two non-negative vectors is a non-negative vector.
Hence each convex combination of any two vectors from F fulfilling (9) fulfills
(9) as well.

(iv) For vectors fulfilling (10):

The set of all vectors (d,w) ∈R2n+n which are given by (10) is convex, because
having any two different vectors

(
d(1),w(1)

)
and

(
d(2),w(2)

)
, for which w(1)

1 ≤

w(1)
2 ≤ . . . ≤ w(1)

n and w(2)
1 ≤ w(2)

2 ≤ . . . ≤ w(2)
n , we get αw(1)

1 +(1−α)w(2)
1 ≤

αw(1)
2 +(1−α)w(2)

2 ≤ . . .≤ αw(1)
n +(1−α)w(2)

n . Hence each convex combina-
tion of any two vectors from F fulfilling (10) fulfills (10) as well.

(v) For vectors fulfilling (11’):

The set of all vectors (d,w) ∈ R2n+n which are given by (11’) is convex as the
convex combination of two real numbers in [0,1] is in [0,1]. Hence each convex
combination of any two vectors from F fulfilling (11’) fulfills (11’) as well.

So we are maximizing a linear function on a convex set and hence, the solution to
the problem must be on the frontier4 of the set of all feasible solutions F . We easily
find out that5

wi ≤
1

n− i+1
.

Let’s have a vector (d∗,w∗) that maximizes the objective function. We show this vector
can be expressed as a convex combination of vectors from (5). The convex combination

4 We show F is a convex polytope and hence the optimal solution will be in an extreme point.
5 It is due to condition (10) or otherwise the weights would add up to a number strictly higher than 1.
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parameters 0≤ ak ≤ 1, k = 1, . . . ,n can be explicitly computed by solving the following
system of equations:6

n

∑
k=n+1−r

ak

k
= w∗r , for r = 1, . . . ,n. (12)

Each ak represents the parameter in a convex combination that corresponds to the vec-
tor d∗,0, . . . ,0,

1
k
, . . . ,

1
k︸ ︷︷ ︸

k−times

 .

We can compute the ak, k = 1, . . . ,n from the w∗k , k = 1, . . . ,n using the Gauss elimi-
nation.

a1 =
(
w∗n−w∗n−1

)
·1

a2 =
(
w∗n−1−w∗n−2

)
·2

...
an−1 = (w∗2−w∗1) · (n−1)

an = w∗1 ·n

(13)

Now we have

w∗ =
n

∑
k=1

ak ·

0, . . . ,0,
1
k
, . . . ,

1
k︸ ︷︷ ︸

k−times

 ,

which is a convex combination of the vectors from (5) as ∑
n
k=1 ak = ∑

n
k=1 w∗k = 1 and

ak ≥ 0 for all k = 1, . . . ,n. Finally the vector (d∗,w∗) can be expressed as a convex
combination of the vectors from (5) because, of course, d∗i ∑

n
k=1 ak = d∗i .

When minimizing the objective function on set F , the optimal solution must be
also attained in set (5). �

This theorem tells us that to find the maximum efficiency of a given quota is a very
easy and fast exercise. We need only to check the n values to find out the maximum
efficiency for any quota. In fact, we don’t even have to do that, as we will see later on.
In the following lemma we use Theorem 1 and express the maximum and minimum
efficiency explicitly as a function of the quota and the number of voters.

Lemma 4. Assume the quota 0 < λ ≤ 1 and the number of voters n ∈ N, n > 1. Then

mn
λ

=
1
2n max

i∈{0,...,n−1}

{
2i ·

n−i

∑
j=d(n−i)λe

(
n− i

j

)}
(14)

6 For example by the Gauss elimination method it is very easy since the system matrix is already triangular.
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and

τ
n
λ

=
1
2n min

i∈{0,...,n−1}

{
2n−2i ·

n−i

∑
j=b(n−i)(1−λ )c+1

(
n− i

j

)}
. (15)

Proof. First we prove the maximization part. The proof is easy once we know the
efficiency maximum is attained in set (5). The number of winning coalitions of size
0 < k ≤ n when considering the vector is0, . . . ,0︸ ︷︷ ︸

i-times

,
1

n− i
, . . . ,

1
n− i︸ ︷︷ ︸

(n−i)-times

 (16)

with no zero weight is
(

n− i
k

)
, but only if k ≥ d(n− i)λe . So in total, there are

n−i

∑
k=d(n−i)λe

(
n− i

k

)
winning coalitions made of voters with non-zero weights. For each winning coalition
made of voters with non-zero weights, there are 2i−1 other winning coalitions, includ-
ing the voters with zero weights, since we have to add all the subsets of voters with
zero weights, except the empty set.7 There are, in total,

2i ·
n−i

∑
k=d(n−i)λe

(
n− i

k

)
winning coalitions corresponding to vector (16). When we compute this value for
all the i = 0, . . . ,n− 1 and we take the highest of them, we must have the maximum
attainable number of winning coalitions. To compute the maximum efficiency, we just
divide it by 2n.

Now we prove the minimization part. We know from Theorem 1 that the minimum
will be attained for the vector of weights from set (5) and hence we will further only
consider the vectors from (5). Let’s denote the sum of the weights of one of the winning
coalitions W ≥ λ . Then clearly 1−W ≤ 1−λ . 1−W is the sum of the weights of all
the voters in a complementary coalition.8 For each winning coalition, for committees
with quota λ , there is only one complementary coalition with a sum of weights lower
than or equal to 1−λ . Assume we have such a vector of weights that minimizes the
number of winning coalitions for the quota λ . Then we also have the minimum number
of complementary coalitions with a sum of weights lower than or equal to 1−λ . Since

7 Because the empty set represents the coalition made only of the voters with non-zero weights and this
coalition has already been counted.
8 We call a complementary coalition such a coalition that consists of all the voters who are not in the original
coalition.
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in total there are always 2n coalitions, minimizing the number of coalitions with a sum
of weights lower than or equal to 1− λ , with respect to the weights, is the same as
maximizing the number of coalitions with a sum of weights over 1−λ with respect to
the weights. In total, there are

n−i

∑
k=b(n−i)(1−λ )c+1

(
n− i

k

)
winning coalitions made of voters with non-zero weights for a vector of weights0, . . . ,0︸ ︷︷ ︸

i-times

,
1

n− i
, . . . ,

1
n− i︸ ︷︷ ︸

(n−i)-times

 . (17)

Analogously to the first part of the proof, the total number of winning coalitions corre-
sponding to vector (17) from set (5) is

2n−2i ·
n−i

∑
k=b(n−i)(1−λ )c+1

(
n− i

k

)
.

Computing this for each vector from (5), we obtain this value for i = 0, . . . ,n− 1 and
by taking the minimum, we obtain the minimum number of winning coalitions under
the quota λ . To compute the minimum efficiency, we just divide it by 2n. �

The previous lemma shows how to compute the minimum and maximum attainable
efficiency given quota λ and number of voters n. However, as we mentioned, we need
not compute all the n values to find the maximum and n values to find the minimum
efficiency. In the following lemma we show it is not necessary to compute all the
n values and that it suffices to compute just the n−min{n,b1/λc}+ 1 values. This
means we can compute less than n values to find the efficiency maximum whenever
λ ≤ 1/2, resp. the efficiency minimum, whenever λ > 1/2. But according to Lemmas
1 and 2, these are the only situations that are of any interest.

Lemma 5. Assume the quota is 0 < λ ≤ 1 and the number of voters is n ∈ N, n > 1.
Then

mn
λ

=
1
2n max

i∈{0,...,n−min{n,b 1
λ
c}}

{
2i ·

n−i

∑
k=d(n−i)λe

(
n− i

k

)}
(18)

and

τ
n
λ

=
1
2n min

i∈{0,...,n−min{n,b 1
1−λ
c}}

{
2n−2i ·

n−i

∑
k=b(n−i)(1−λ )c+1

(
n− i

k

)}
. (19)

Proof. First we prove the part about the maximum efficiency. Within this proof, we
will always take into account only the vectors of weights from (5). Two situations can
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occur. In the first, no weight is higher than or equal to λ . In the second, at least one
weight is higher than or equal to λ . Now, we are interested only in the second situation.
Because we only have vectors from (5), at least one weight higher than λ is the same
as any non-zero weight that is higher than or equal to λ . We need to specify for which
vectors from (5) are all the non-zero weights higher than or equal to λ . From lemma
3 we know that at least max{0,n−b1/λc} must be lower than λ . This implies that
no more than n−max{0,n−b1/λc}= min{n,b1/λc} weights can be higher than or
equal to λ . Assume there is exactly k̂ = min{n,b1/λc} weights higher than or equal
to λ—this means we assume the vector0, . . . ,0,

1
min

{
n,
⌊ 1

λ

⌋} , . . . ,
1

min
{

n,
⌊ 1

λ

⌋}︸ ︷︷ ︸
min{n,b 1

λ
c}-times


from (5). Indeed,

min
{

n,

⌊
1
λ

⌋}
≥ λ .

Hence for any k̂ < min{n,b1/λc} is 1/k̂ > λ , and so any non-zero weight is also
higher than λ , and the efficiency equals

∑
n−1
j=n−k̂

2 j

2n ,

as there are 2n−1 coalitions containing the first non-zero weight, 2n−2 coalitions con-
taining the second non-zero weight which do not contain the first non-zero weight,
2n−3 coalitions containing the third non-zero weight which contain neither the first,
nor the second non-zero weight, and so on up to the k̂-th non-zero weight. In total
there are exactly

n−1

∑
j=n−k̂

2 j = 2n−2n−k̂ (20)

winning coalitions.
As the sum (20) is strictly increasing in k̂, we may compute the number of win-

ning coalitions only for k̂ = min{n,b1/λc} , . . . ,n as for any k̂ < min{n,b1/λc}, the
efficiency is surely strictly lower than the one for k̂ = min{n,b1/λc} .

k̂ stands for the number of non-zero weights, while i in the expression (14) corre-
sponds to the number of zero weights. The number of zero weights can be expressed
as n− k̂. So we use equation (14), but we take the maximum just of the efficiency for
the vectors of weights from (5), which contain up to max{0,n−b1/λc} zero weights.
By doing this, we obtain (18).

Now we prove the part about the minimum efficiency using the equality (21)

1
2n min

i∈{0,...,n−min{n,b 1
1−λ
c}}

{
2n−2i ·

n−i

∑
k=b(n−i)(1−λ )c+1

(
n− i

k

)}
= (21)
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1− 1
2n max

i∈{0,...,n−min{n,b 1
1−λ
c}}

{
2i ·

n−i

∑
k=b(n−i)(1−λ )c+1

(
n− i

k

)}
.

We denote µ := 1−λ and use a slightly modified Lemma 4 for a quota equal to µ. The
modification is in requiring the sum of weights being strictly above the quota. In other
words, we maximize the number of coalitions with a sum of weights strictly above
1− λ and then subtract this maximized number from the total number of coalitions,
obtaining the minimum number of coalitions with a sum of weights higher than or
equal to λ . �

5. The symmetry of efficiency

Lemma 6. Assume n≥ 2 and 0 < λ ≤ 1. Then

τ
n
λ

= 1−mn
1−λ+ε

, (22)

for any ε such that λ > ε ≥ 0, and ε is smaller than the smallest difference between
any two distinct sums of weights of two distinct coalitions.

Proof. Consider all the winning coalitions for quota β and denote the number of them
k. Clearly, for each coalition there exists a unique complementary coalition made of all
the voters who are not in the original winning coalition. Hence the number of winning
coalitions for quota β is the same as the number of all coalitions that are made of voters
whose weights add up to at most 1− β . When k is the maximal attainable number
of winning coalitions for quota β , then it is also the maximal attainable number of
coalitions with voters whose weights add up to at most 1−β . Because there is always
just 2n of all coalitions, maximizing the number of all coalitions with a total weight
lower than or equal to 1− β is the same as minimizing the number of all coalitions
with a total weight strictly higher than β . Assume now we have added a very small
number ε to quota β such that the maximal number of winning coalitions have been
lowered only by the coalitions with a total weight equal to β (if there were any). Then
the maximum number of winning coalitions K for quota β +ε is equal to the maximum
number of all losing coalitions for quota 1−β , which is the same as the minimum of
2n−K of coalitions winning for quota 1−β . So we have τn

1−β
= 1−mn

β+ε
. Denoting

λ = 1−β as 0≤ β ≤ 1 we obtain τn
λ

= 1−mn
1−λ+ε

. �

It is clear the problem is not fully symmetric around the quota equal to 1/2 since
the coalition is winning whenever the sum of its voters’ weights is at least equal to the
quota, which means higher than or equal to the quota. The slight asymmetry is caused
by reaching the quota being sufficient for the coalition to win.

6. Efficiency structure

In this section, we analyze the structure of the efficiency maxima and minima with
respect to weights when we take the maximum (resp. minimum) as a function of
the quota. We show there are at most asymptotically 3n2/2π2 + o(n log(n)) different
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efficiency maxima (resp. efficiency minima) that can be attained when moving the
quota within Λ (n stands for the number of voters). We also show in which intervals
the quota can move freely without changing the efficiency maximum (resp. efficiency
minimum).

For k voters, k ∈ N, we divide the interval (0,1) in the following way: We denote
di j = i/(k− j) for i ∈ N,0 ≤ i ≤ (k− j) , j = 0, ...,k− 1 and sort all the di j’s in non-
decreasing order. We obtain some finite sequence (di) of numbers within the interval
[0,1] sorted in nondecreasing order. Now we create a subsequence

(
d̂i
)

of the sequence
(di) by dropping the elements which are not unique, except for just one. In other
words, whenever there are at least two equivalent elements of the sequence (di) we
drop all of them except just one. In the final sequence

(
d̂i
)

each value is hence unique
and the sequence becomes sorted in ascending order and contains all the values that
were in the original sequence (di). The elements of the final sequence

(
d̂i
)

we denote
0 = d̂1 < d̂2 < · · ·< d̂k̂ = 1 and call them milestones. The interval (0,1) is then divided
as follows

(0,1) =
(
d̂1, d̂2

)
∪
[
d̂2, d̂3

)
∪·· ·∪

[
d̂k̂−1, d̂k̂

)
. (23)

Lemma 7. The number of milestones (when we include 0 and 1) for n voters in the
interval [0,1] is kn = 2+∑

n
j=1 d j, where d j = j−1−∑{p:p/ j∧p< j∧p>0} dp.

Proof. The proof can be accomplished by mathematical induction. We say the k-th
step will be the process of computing the number of milestones for a denominator equal
to k. In each step those milestones are added which are not equal to milestones from
any of the previous steps. The milestones from the k-th step are equal to milestones
added in the l-th step, when l < k if and only if there is a number p ∈ N so that p
divides k and l. To the total number of milestones we add 2, representing 0 and 1.
Because the sequence of milestones in the literature is known as the Farey sequence
and the cardinality of the set of all the elements of the sequence is expressed using the
Euler’s totients function, we will not present a rigorous detailed proof here. �

An interesting observation is that the number of milestones for n voters is asymp-
totically equal to 3n2/π2 + o(n log(n)), see for example p. 155 in Vardi (1991). As
the efficiency maximum for quotas above one half is just a single value (see Lemma 1)
and the efficiency minimum for quotas below one half is also just a single value (see
Lemma 2), we see that at most just about half of the milestones are in fact relevant9

for the efficiency maximum, or minimum, to change. Hence there is asymptotically at
most 3n2/2π2 +o(n log(n)) of a different efficiency maxima (resp. efficiency minima)
that can be attained when moving the quota within Λ.

Any two milestones such that there is no other milestone between them we will call
adjacent milestones (Fareys pairs). Having two adjacent milestones d̂i and d̂i+1 we will
call d̂i the lower adjacent milestone with respect to d̂i+1, and d̂i+1 the higher adjacent
milestone with respect to d̂i.

Lemma 8. The efficiency maximum (resp. efficiency minimum) is the same for all the
quotas between two adjacent milestones, or for quotas such that the higher quota is
9 As for each milestone, we can find another one which has the same distance from 1/2.
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equal to some milestone d̂ j and the lower quota is strictly above the adjacent lower
milestone with respect to d̂ j.

Proof. Assume we have two quotas 0 < λ1 < λ2 < 1 and k different milestones. As-
sume there is an index i ∈ {1, . . . ,k−1} such that d̂i < λ1 < λ2 ≤ d̂i+1. In other words,
both the quotas are between two adjacent milestones, or the higher quota is equal to a
milestone, while the lower quota is strictly above the adjacent lower milestone. This
implies there is no milestone strictly between λ1 and λ2. From the definition of a mile-
stone we know there is also no rational number with a denominator equal to or lower
than n strictly between the two quotas. From Lemma 5 we know the efficiency maxi-
mum (resp. efficiency minimum) does not depend directly on the quota λ , but on the
expression dλ je for some j ∈ {1, . . . ,n} . If for every j ∈ {1, . . . ,n} is dλ1 je= dλ2 je ,
then the efficiency maximum (resp. efficiency minimum) surely is the same for both
quotas.

We make the proof by contradiction in assuming the efficiency maximum (resp.
efficiency minimum) is different for quota λ1 and for quota λ2. Then there must be
some j ∈ {1, . . . ,n} so that d jλ1e < d jλ2e, as if such a j would not exist then the
efficiency maximum (resp. efficiency minimum) could not be different for the two
quotas. There must exist a positive integer p, such that d jλ2e = d jλ1e+ p. However,
for us it is sufficient to know that

d jλ2e ≥ d jλ1e+1. (24)

We will prove the statement

λ1 <
b jλ2c

j
≤ λ2.

The inequality b jλ2c ≤ jλ2 is easy, as b·c stands for the highest lower integer. To
prove the strict inequality jλ1 < b jλ2c is a little bit more challenging. From (24) we
know that jλ1 ≤ d jλ1e ≤ d jλ2e−1 ≤ b jλ2c . However, if jλ1 = b jλ2c , then jλ1 ∈ N
and hence jλ1/ j = λ1 must be a milestone. But this would be in contradiction with
d̂i < λ1 < d̂i+1. So, in total we get λ1 < b jλ2c/ j.

We have proven, that

λ1 <
b jλ2c

j
≤ λ2,

but if b jλ2c/ j = λ2, we are not yet in contradiction with the statement of the lemma as
λ2 is allowed to be a milestone. If b jλ2c/ j < λ2, we are finished, as b jλ2c/ j is surely a
milestone and it is strictly between the two quotas. To show it is a milestone, it suffices
to recall that a milestone is each rational number between 0 and 1 with a denominator
equal to an integer lower than or equal to n.

Now we finish the proof by solving the case b jλ2c/ j = λ2 (which means that λ2 is
a milestone). If this holds, we have jλ2 ∈ N. In this case, there is a number d jλ1e/ j,
which is a milestone and, moreover, we can easily show that:

λ1 ≤
d jλ1e

j
< λ2.
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The strict inequality is simple, as b jλ2c= jλ2 implies jλ2 = d jλ2e, and we have (24)
stating that d jλ1e < d jλ2e . The weak inequality is easy as d·e stands for the lowest
higher integer.

This completes the proof, since whenever the efficiency maximum (resp. efficiency
minimum) is different for quota λ1 from the efficiency maximum for quota λ2, we
have just shown there must be a milestone between the two quotas or the higher quota
must be a milestone and the lower quota must be below or equal to the adjacent lower
milestone. �

This lemma tells us that whenever the quota is between any two adjacent mile-
stones, the efficiency maximum (resp. efficiency minimum) does not change. However
it does not tell us that moving the quota ”across” a milestone would always change the
efficiency maximum (resp. efficiency minimum) as this is generally not true.

Theorem 1 can be used to provide information on efficiency when setting the quota
for a newly designed electoral system or voting rule, but it can also be used for other
economic problems, where an optimal allocation is being sought out.

7. Conclusions

We were interested in the behavior of the efficiency of a weighted voting system (pro-
bability of approval) as a function of the weights assigned to particular voters and the
quota. We especially wished to find the maximal and minimal attainable efficiency
with respect to the vector of weights, given the number of voters and the quota. We
have answered all the raised questions:

(i) What are the minima and maxima of the efficiency function with respect to the
weights and can they be expressed analytically in terms of the quota and number
of voters? This question has been answered by Theorem 1 and Lemmas 1, 2
and 5.

(ii) Is the efficiency function symmetric in some sense around the quota equal to one
half? This question has been answered by Lemma 6.

(iii) Are there any intervals in which the quota can move freely so that the effi-
ciency maximum (resp. efficiency minimum) with respect to the weights does
not change? If so, how they can be formally described? This question has been
answered by Lemmas 7 and 8.

(iv) How many different values can the efficiency maximum, resp. efficiency mini-
mum, attain in terms of the number of voters n? Can this number be expressed
explicitly as a function of n? This question has been partially answered in the
text. We have noted the number of the efficiency maxima, resp. efficiency minima,
asymptotically equals 3n2/2π2 +o(n log(n)) .

We have presented Theorem 1, allowing us to express the efficiency minimum and
maximum explicitly as functions of the quota and the number of voters. Moreover, we
have provided a proof of this theorem. As far as we know, there is no other work where
this would have already been proven. The practical use of our theorem is mainly for
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control over quota-setting when designing voting rules for weighted voting systems and
it can be used more generally within the context of traditional economy when searching
for an optimal allocation. Usually the quota for regular propositions to be accepted
by legislative institutions equals one half plus one mandate. However, constitutional
quotas are often higher, since the most important democratic rules embedded in the
constitutions need to be more secure than regular laws. Corollaries of our theorem help
us to analyze the minimum (resp. maximum) efficiency of weighted voting systems as
a function of the quota and number of voters.

Acknowledgment This research was supported by the Grant Agency of the Czech
Republic, project No. 402/09/1066 “Political economy of voting behavior, rational vot-
ers’ theory and models of strategic voting”.
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