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Abstract We study non-cooperative link formation games in which players have to decide how
much to invest in relationships with other players. A link between two players is formed, if and
only if both make a positive investment. The cost of forming a link can be interpreted as the
value of privacy. We analyze the existence of pure strategy equilibria and the resulting network
structures with tractable specifications of utility functions. Sufficient conditions for the existence
of reciprocal equilibria are given and the corresponding network structure is analyzed. Pareto
optimal and strongly stable network structures are studied. It turns out that such networks are
often complete.
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1. Introduction

We study non-cooperative link formation games in which players have to decide how
much to invest in relationships with other players. A link between two players is
formed, if and only if both make a positive investment. The value of a link depends on
the size of investments, and this value can be different for different players. The cost
of forming a link can be interpreted as the value of privacy, or the opportunity cost of
lost privacy.

Friendships, partnerships, and researchers’ collaboration networks are prime exam-
ples of situations that could be modeled this way. Friendships could be strong or weak
and two people in a relationship could value it differently. Researchers may spend
different levels of effort in their joint projects, and they could value their cooperation
differently. It is therefore important to understand what kind of factors affect agents’
choices in such situations, and how the equilibrium network looks like.

We analyze the existence of pure strategy equilibria and the resulting network struc-
tures with tractable specifications of utility functions. Sufficient conditions for the ex-
istence of reciprocal equilibria are given and the corresponding network structure is
analyzed. Pareto optimal and strongly stable network structures are studied. It turns
out that such networks are often complete.

Each player has a fixed amount of a single resource like time or effort that he can
invest in relationships with other players and/or use for his own private benefit. The
more two players invest in their mutual relationship, the higher is the utility to both
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players from this relationship. Since resources are limited, utility from privacy or from
other relationships decreases, and there is a tradeoff between relationships. Decisions
are made simultaneously and pure strategy Nash equilibria are searched for.

We show that a reciprocal equilibrium with a complete network (or a network with
complete components) exists in many symmetric or anonymous link formation games
(Theorems 1 and 2). In such an equilibrium players i and j invest equal amounts in their
mutual relationship. Bauman (2015) studies reciprocity of equilibria in symmetric
games with strictly concave valuations of privacy and constant returns to scale Cobb-
Douglas utilities from relationships.

Network structure in a reciprocal equilibrium depends on players’ valuations of
privacy. If these valuations are linear functions, then reciprocal equilibria often exhibit
homophily (Theorem 3): links are more likely to be formed between similar players
(Currarini et al. 2009).

Equilibria with a complete network exists under variety of circumstances when
reciprocity is not demanded, for example in semi-symmetric games with bilateral strate-
gic complements or substitutes (Theorems 4 and 5). In semi-symmetric link formation
games players have common preferences over other players as friends. In such cases
it is important to understand how the popularity or status of an agent affects his beha-
vior in the network. Salonen (2015) studies the relation between popularity and some
well-known network centrality measures in semi-symmetric games.

In the class of models studied in this paper, Pareto optimality of a network struc-
ture implies in many cases that network must be complete (Propositon 1). Similarly,
strongly stable equilibria (Bloch and Dutta 2009) have often complete networks as
well (Proposition 2). It is shown at the end of Section 4.1. that any Pareto optimal
or strongly pairwise stable equilibrium must have a complete network, when utilities
have a strictly concave Cobb-Douglas form.

Completeness of a network sounds rather extreme if the player set is very large.
A more moderate interpretation of these results would be that networks consist of com-
pletely connected components. Be this as it may, Bloch and Dutta (2009) get results
that efficient or strongly stable networks are stars. It is therefore necessary to compare
the underlying assumptions of our models.

We assume that players get utility only from private consumption or direct links
(relationships) with other players, and that a relationship of two players gives pos-
itive utility only if both players have made a positive investment. Bloch and Dutta
(2009) assume that players get utility also from indirect connections, i.e. from friends
of friends, and that a link between two players is formed even if only one of the play-
ers has made a positive investment. In our model two linked players may value the
relationship differently, whereas in their model the values are identical.

The model of Bloch and Dutta (2009) may be more natural in situations where
links have instrumental value, like communication networks. Since direct links are
not absolutely necessary for information transmission, complete networks need not
be efficient structures. Our model is perhaps better suited in cases where links have
intrinsic value, like friendships. In such cases indirect connections may be very poor
substitutes for direct links, and increasing the number of direct links becomes both
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individually and socially optimal.
There is a large literature of link formation games where the link strength can take

only two values: either it is 1 (link is formed) or 0 (link is not formed). Jackson and
Wolinsky (1996) is the seminal paper of this strand of literature (see Jackson and
Zenou 2015 for a comprehensive review of network games). Cabrales et al. (2011)
analyze a linear quadratic game with productive investments and link formation where
link strengths can be nonnegative real numbers. Rather than choosing each link in-
tensity separately, a player chooses one real number that describes his socialization
effort. Strengths of individual links are then determined jointly, given socialization
efforts of all players. The resulting network determines the profitability of productive
investments.

In our model players invest in each link separately, and the utility from equal in-
vestments in different links may be different. So the links of a player may represent
very different relationships with other players, although seemingly a player decides
only how to share a homogeneous resource among his friends.

The paper is organized in the following way. The notation is introduced in Sec-
tion 2. In Section 3 some simple models with Cobb-Douglas functions are analyzed.
Main results are stated in Section 4.

2. The Model

A tuple W = (N,g) denotes an unweighted, undirected network with a finite node set
N and a link set g. The link set g specifies which nodes i, j ∈ N are directly connected.
Such a link may be denoted by i j ∈ g with the understanding that ji = i j. In this paper
loops are ignored so i 6= j if i and j are linked. If it is clear what the node set is we may
denote a network simply by g.

Given a network W =(N,g) and i, j ∈N, there exists a path between i and j, if there
exists nodes i0, . . . , iK such that (i) i0 = i, iK = j; (ii) ikik+1 ∈ g for all k = 0, . . . ,K −1;
(iii) all nodes are distinct except possibly i0 and iK . A network W = (N,g) is connected
if there exists a path between any two nodes i, j ∈ N.

A subset A ⊂ N is a component of a network W = (N,g), if (i) there exists a path
between any two nodes i, j ∈A; (ii) there are no links between A and Ac ≡N\A. A node
set N can always be partitioned into connected components. A network W = (N,g) is
connected, if N is a component. A component A is complete, if for every i, j ∈ A there
is a link i j ∈ g. A network W = (N,g) is complete, if N is a complete component.

A normal form game G=

N,(Si)i∈N ,(ui)i∈N


specifies a player set N, a set of pure

strategies Si and a utility function ui : S −→ R for each player i ∈ N, where S = ΠiSi,
the product of strategy sets, is the set of strategy profiles.

A game G is symmetric, if Si = S j for all i, j ∈ N, and ui(s) = u j(s′) for all i, j ∈ N,
for all s,s′ ∈ S such that si = s′j,s j = s′i and sk = s′k for all k 6= i, j.

A game G is anonymous, Si = S j for all i, j ∈ N, and ui(s) = ui(s′) if the only
difference between s and s′ is that s j = s′k and sk = s′j for some j,k 6= i.

Given s ∈ S, we may denote s = (si,s−i) when we want to emphasize that i chooses
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si. A pure strategy Nash equilibrium is a strategy profile s ∈ S such that

ui(si,s−i)≥ ui(s′i,s−i),∀i ∈ N,∀s′i ∈ Si. (1)

Given a symmetric game G, a strategy profile s is a symmetric equilibrium, if si = s j
for all i, j ∈ N.

We study link formation games of the following type. The set of pure strategies of
player i ∈ N is

Si =


si ∈ RN
+ | ∑

j
si j = 1


.

An interpretation is that each player i has one unit of time or effort to be shared with
other player j including i himself. The utility function of player i is

ui(s) = ∑
j 6=i

Ui j(si j,s ji)+Vi(sii), (2)

where Ui j : [0,1]2 −→ R+ is a function giving the utility for player i from investments
si j,s ji. The function Ui j has the following properties: (i) Ui j(0,s ji) = 0 =Ui(si j,0) for
all si j,s ji; (ii) Ui j is strictly concave and differentiable in si j for any given s ji > 0; (iii)
Ui j is strictly increasing and continuous on (0,1]× (0,1].

The function Vi : [0,1]−→R+ tells how much player i values privacy. The function
Vi is concave, strictly increasing, differentiable on (0,1), and Vi(0) = 0.

In anonymous link formation games Ui j =Ui for all i, j ∈N, and hence ui =Ui+Vi.
In symmetric link formation games ui =U +V for all i ∈ N. [In a link formation game
the identity of strategies si = s j is understood so that sii = s j j, si j = s ji, and sik = s jk
for all k 6= i, j.]

We say that a link formation game G =

N,(Si)i∈N ,(ui)i∈N


is semi-symmetric, if

there are functions U and V such that

ui(s) = ∑
j 6=i

p jU(si j,s ji)+ ciV (sii),∀s ∈ S, (3)

for some parameters p j > 0,ci > 0, for all i, j ∈ N. So there is a common ordering of
players such that player j is considered as a more valuable friend than i, if p j > pi.
The cost parameters ci reflecting the value of privacy could be player specific.

There are two different interpretations of the network model associated with the
game. We may think that the network is undirected and unweighted, and the invest-
ments describe the intensity of the relationship, or how much the agents utilize a given
link and how much they benefit from it. Alternatively, investment si j gives the strength
of the link from i to j, and players get nonzero utility from a relationship only if both
make a positive investment. In this case the network is directed and weighted. To keep
notation simple, we gave formal definitions for the undirected unweighted network
only.

Next we give some definitions that are needed in the main theorems.

Definition 1 (Bilateral strategic complements). Ui j is twice continuously differen-
tiable on (0,1)× (0,1) with ∂ 2Ui j/∂ s ji∂ si j > 0, i 6= j.
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Bilateral strategic complements imply ∂ 2ui/∂ s ji∂ si j = ∂ 2Ui j/∂ s ji∂ si j by (2). Since
sii = 1−∑ j 6=i si j the usual strategic complements condition is not satisfied: if s ji in-
creases, then si j increases but sik decreases for some k 6= j when i uses a best reply.

Analogously, bilateral strategic substitutes mean ∂ 2Ui j/∂ s ji∂ si j < 0 holds on (0,1)×
(0,1), for all players i.

Definition 2 (Increasing derivative on the diagonal). A function Ui j : [0,1]2 −→R+

has (strictly) increasing derivative on the diagonal, if

∂Ui j(y,y)
∂x1

(<)≤
∂Ui j(z,z)

∂x1
, for all y < z.

If both i and j invest y in their relationship, the marginal utility for i increases in
y. If the inequality in Definition 2 is reversed, we say that Ui j has (strictly) decreasing
derivative on the diagonal. If equality holds for all y < z we say that Ui j has constant
derivative on the diagonal.

Note that if Ui j is (jointly) concave, then it has a decreasing derivative on the diag-
onal. On the other hand the Cobb-Douglas function f (x,y) = xayb is concave in both
arguments separately and has increasing derivative on the diagonal, if 0 < a,b < 1, and
a+ b ≥ 1. If Ui j is homogeneous of degree α ≥ 1 (0 < α ≤ 1), then Ui j has increa-
sing (decreasing) derivative on the diagonal. Homogeneity is clearly a much stronger
assumption than increasing and decreasing derivative conditions.

If a game is not symmetric, a symmetric equilibrium need not exist. However,
behavior may be nearly symmetric also in non-symmetric games. The following is a
pairwise or bilateral symmetry condition that seems natural in the context of friendship
networks.

Definition 3 (Reciprocal equilibrium). An equilibrium s of a link formation game
G =


N,(Si)i∈N ,(ui)i∈N


is reciprocal, if si j = s ji for any pair i, j ∈ N, i 6= j of players.

An interior equilibrium s of a link formation game is such that sii,si j > 0 for all
players i, j. The network corresponding to an interior equilibrium is complete. Note
that if sii = 0 for some player i, then s cannot be an interior equilibrium. If si j > 0 for
all i and for all j 6= i, then the network is complete.

3. Examples

Let us first analyze some simple examples based on Cobb-Douglas functions Ui j.

Example 1. Let G =

N,(Si)i∈N ,(ui)i∈N


be a semi-symmetric game with bilateral

strategic complements such that

ui(s) = ∑
j 6=i

p jsα
i js

1−α

ji + ci

1−∑

j 6=i
si j

,

where 0<α < 1, and ci, p j > 0. For generic values of parameters α,ci, p j all equilibria
s satisfying sii > 0 for all i are autarkic. That is, sii = 1,∀i. To see this, suppose that
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in equilibrium all the values si j,s ji,sii and s j j are strictly positive for some players i, j.
Then the corresponding first order conditions for players i and j satisfy:

α p jsα−1
i j s1−α

ji = ci

α pisα−1
ji s1−α

i j = c j (4)

These equations imply
α

2 pi p j = cic j, (5)

which does not hold for generic values of α,ci, p j. Namely, let R2n+1
++ be the set of

all strictly positive vectors x = (α, p1,c1, . . . , pn,cn). Take any two players i, j. The
subset of vectors x ∈ R2n+1

++ such that α pi p j = cic j is closed and has an empty interior
in R2n+1

++ . Since there are only finitely many players, the subset B such that equation (5)
does not hold for any two players i, j is such that the closure of B contains R2n+1

++ .
Hence, generically α pi p j = cic j does not hold.

Suppose that for each pair pt ,ct there is a group Nt of players with these parameters
in their utility functions. Then the genericity result above implies that typically links
are formed only within each group Nt , if sii > 0 for all players. In this case equilib-
ria exhibit homophily: links are formed only between similar players (Currarini et al.
2009). Note however that other kinds of equilibria may exist if sii = 0 for some players.

The game G of Example 1 has constant derivative on the diagonal and a linear Vi
function. Theorem 2 below shows that if G is an anonymous game and Vi functions are
strictly concave, then an interior reciprocal equilibrium often exists.

Let us modify the game G of Example 1 slightly so that interior equilibria exist.

Example 2. Let G =

N,(Si)i∈N ,(ui)i∈N


be a game such that

ui(s) = ∑
j 6=i

p jsα
i js

β

ji + ci

1−∑

j 6=i
si j

,

where 0 < α,β , α +β < 1, and ci, p j > 0, for all i, j ∈ N. Let pi j = p j/ci, and the first
order conditions for an interior equilibrium for players i, j are:

α pi jsα−1
i j sβ

ji = 1 (6)

α p jisα−1
ji sβ

i j = 1 (7)

Solving for si j gives us

si j = α
1/[1−α−β ]


p1−α

i j pβ

ji

1/[(1−α)2−β 2]
,∀i, j ∈ N. (8)

Note that si j is an increasing function of both pi j and p ji. If c j increases, the value
of privacy for j increases, and p ji decreases. Then j invests less in his relations with
other agents. Consequently, also si j decreases by bilateral complementarity.

If all players are identical, then pi j = p/c for all i, j, for some p,c. A symmetric
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interior equilibrium exists if

α p < c
 1

n−1

1−α−β

.

As n increases, this inequality holds if p decreases or c increases sufficiently. This
holds since in symmetric equilibrium marginal utility from links increases as n in-
creases because α +β < 1. At an interior equilibrium sii > 0, and therefore the value
of privacy c must increase relative to p.

For a nonsymmetric example, let n = 11,α = 1/4,β = 1/2, and p1 = p, p2 =
p2, . . . , pn = pn for some p ∈ (0,1). If ci = 1 for all i, then an equilibrium with a
complete network is given by

si j = 4−4


p2i+3 j
4/5

, (9)

from which we can compute that

s ji =

pi− j4/5si j, for j < i.

The players who are highly ranked by the society (low i and high pi) invest less in
relationships than lower ranked players. Take i = 4 and j = 3. Then s34 = p4/5s43, and
therefore s34 < s43.

For another numerical example, assume p j = 1 for all players j, and c1 = c,c2 =
2c, . . . ,cn = nc, for some c > 1/2, and let the other parameters have the same values as
above. Then the following values characterize an equilibrium with a complete network:

si j = 4−4

i−3 j−2c−5

4/5
, (10)

from which we can compute that

s ji =
 i

j

4/5
si j.

The players with high value of privacy (high c and i) invest less in relationships than
players with a low value of privacy. Take i = 4 and j = 3. Then s34 = (4/3)4/5s43, and
therefore s34 > s43.

4. Results

The existence of equilibria is not a problem in our model, since a strategy profile s such
that sii = 1 and sik = 0,k 6= i, for all i ∈ N is trivially an (autarkic) equilibrium, and also
a reciprocal equilibrium. Here is a more interesting existence result for symmetric
games. All long proofs are relegated in the Appendix.

Theorem 1. A symmetric link formation game G =

N,(Si)i∈N ,(ui)i∈N


has a non-

trivial reciprocal equilibrium with complete components, if and only if there exists

Czech Economic Review, vol. 9, no. 3 175



H. Salonen

x ∈ (0,1) such that
∂U(x,x)

∂x1
−V ′(1− x)≥ 0. (11)

Proof. See Appendix.

The condition (11) says it is better to form one reciprocal link than not to form any
links with other players.

Reciprocal equilibria may exist also in nonsymmetric games.

Theorem 2. Let G =

N,(Si)i∈N ,(ui)i∈N


be an anonymous link formation game with

the following properties: (i) constant derivative on the diagonal, (ii) Vi is strictly con-
cave. Assume also that if all players i ∈ N have the same utility function ui, then the
corresponding symmetric game would have a symmetric equilibrium si such that the
resulting network is complete, for any i ∈ N. Then there exists a reciprocal equilibrium
such that the resulting network is complete.

Sketch of a proof. Theorem 1 gives necessary and sufficient conditions for the ex-
istence of a reciprocal equilibrium in symmetric games. The idea of the proof is the
following. Formulate a symmetric game corresponding to each of the utility functions
ui that players in a (nonsymmetric) game G have. By assumption, each of these games
has a symmetric equilibrium with a complete network. A reciprocal equilibrium for
G can be recursively constructed from these symmetric equilibria. For details see Ap-
pendix. �

Note that if Vi is linear, then Theorem 2 may not hold by Example 1. Theorem
fails if Vi is linear even if Ui is assumed to be strictly concave as the following result
demonstrates. We say that a node subset C is a clique, if there is a link between every
two nodes i, j ∈C.

Theorem 3. Suppose G =

N,(Si)i∈N ,(ui)i∈N


is an anonymous link formation game

such that (i) derivative is strictly decreasing on the diagonal, and (ii) Vi is linear and
Ui =U. If there is a reciprocal interior equilibrium s such that the equilibrium network
has a clique C, then players i ∈C have the same utility functions ui =U +Vi.

Proof. By condition (ii), Vi(sii) = cisii for some constant ci > 0. For each i ∈C, there
is at most one xi such that ∂Ui(xi,xi)/∂x1 = ci by condition (i). For i ∈C this equality
must hold in the reciprocal equilibrium s since sii > 0. If ci 6= c j, then xi 6= x j because
Ui =U j. Therefore if C is a clique in an equilibrium network and i, j ∈C, then ci = c j
and hence players in C have the same utility functions. �

Remark 1. Note that Theorem 3 holds also if condition (i) is replaced by the condition
that derivative is strictly increasing on the diagonal. Of course, marginal utility from
link formation may be so large as compared to the cost parameters ci, that sii = 0 in
equilibrium. Then there could exist reciprocal equilibria with a complete network even
if players have different cost parameters ci.

We show next that if a game has bilateral strategic complements, then with the
same or slightly weaker assumptions as in Theorem 3 there exists an equilibrium such
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that the equilibrium network is complete. By Theorem 3 this equilibrium cannot in
general be reciprocal.

Theorem 4. Suppose G =

N,(Si)i∈N ,(ui)i∈N


is a semi-symmetric link formation

game with bilateral strategic complements such that: (i) derivative is strictly decreas-
ing on the diagonal; (ii) parameters p j > 0 and ci > 0 of equation (3) are taken from
compact intervals P and C, respectively; (iii) the function V in (3) is linear. Assume
also that if all players i ∈ N would have the same parameters p ∈ P,c ∈ C, then the
corresponding symmetric game would have a symmetric interior equilibrium s. Then
there exists an equilibrium with a complete network.

Sketch of a proof. For each pair p ∈ P and c ∈ C of parameters there exists a
symmetric interior equilibrium. By assumption (i) these equilibria can be naturally
ordered. An equilibrium for G with a complete network can be formed from these
symmetric equilibria. For details see Appendix. �

Remark 2. Note that Theorem 4 holds also if condition (i) is replaced by the condition
that derivative is strictly increasing on the diagonal. In such a case an interior equi-
librium is not stable in the usual best reply dynamics. The assumption of Theorem 4
that derivative is strictly decreasing (or strictly increasing) is critical as demonstrated
in Example 1.

For games with bilateral strategic substitutes we have the following.

Theorem 5. Suppose G =

N,(Si)i∈N ,(ui)i∈N


is a semi-symmetric link formation

game with bilateral strategic substitutes such that: (i) parameters p j > 0 and ci > 0 of
equation (3) are taken from compact intervals P and C, respectively; (ii) the function
V in (3) is linear. If for each p j and ci, and for each z ∈ (0,1/(n− 1)] there exists
x ∈ (0,1/(n− 1)] such that p j∂U(x,z)/∂x1 − ci = 0, then there exists an equilibrium
with a complete network.

Proof. See Appendix.

4.1 Efficiency and Stability of Equilibria

We have focused on equilibria such that the corresponding network is complete, or has
complete components. It turns out in our framework completeness of equilibrium net-
works is in many cases closely related to stability and Pareto optimality of equilibria.

Given a game G =

N,(Si)i∈N ,(ui)i∈N


, a strategy profile s is Pareto optimal, if

there is no other profile s′ such that ui(s′) ≥ ui(s) for all i ∈ N and u j(s′) > u j(s) for
some j ∈ N. A network corresponding to a strategy profile s is Pareto optimal, if s is a
Pareto optimal strategy profile.

The following result gives conditions under which a Pareto optimal network must
be complete. Intuitively, the condition that guarantees completeness of the equilibrium
network is that the marginal utility from privacy is less than the marginal benefit from
a sufficiently small reciprocal investment.
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Proposition 1. Suppose a link formation game G =

N,(Si)i∈N ,(ui)i∈N


is such that

for each i ∈ N and zi ∈ (0,1] there exists xi ∈ (0,zi) such that

∂Ui j(xi,xi)

∂x1
>V ′

i (z
i − xi),∀i, j ∈ N, i 6= j,

and that each Ui j is concave. If s ∈ S is Pareto optimal and sii > 0,∀i ∈ N, then
si j,s ji > 0, ∀i, j ∈ N.

Proof. Suppose to the contrary that s ∈ S is Pareto optimal and sii > 0,∀i ∈ N, but
si j = 0 for some i, j ∈ N. Since Ui j(0,s ji) = 0 and U ji(s ji,0) = 0, Pareto optimality of
s implies that s ji = 0. By assumption, there exists xi < sii and x j < s j j such that

∂Ui j(xi,xi)

∂x1
>V ′

i (sii − xi),
∂U ji(x j,x j)

∂x1
>V ′

j(s j j − x j).

Since Ui j and Vi are concave functions, these inequalities hold for every x ∈ (0,min{xi,
x j}) as well. Given such an x, consider a strategy profile s′ that is otherwise like the
profile s, except that s′i j = s′ji = x, and s′ii = sii−x, s′j j = s j j −x. Then ui(s′)> ui(s) and
u j(s′)> u j(s) while uk(s′) = uk(s) for all k 6= i, j, and therefore s is not Pareto optimal,
a contradiction. �

Remark 3. Proposition 1 holds for example when each Ui j is a strictly concave Cobb-
Douglas function. The functions Vi can then be any concave, strictly increasing func-
tions. Note that Proposition 1 holds also if functions Ui j have decreasing derivative on
the diagonal, which is a weaker assumption than concavity.

An equilibrium s and the corresponding network are called s is strongly pairwise
stable, if there is no strategy profile s′ such that ui(s′) > ui(s) and u j(s′) > u j(s) for
some i, j ∈ N, when sk = s′k for all k ∈ N \ {i, j} (Bloch and Dutta 2009). The follo-
wing result states conditions such that the network corresponding to a strongly stable
equilibrium must be complete.

Proposition 2. Suppose a link formation game G =

N,(Si)i∈N ,(ui)i∈N


is such that

for each i ∈ N and zi ∈ (0,1] there exists xi ∈ (0,zi) such that

∂Ui j(xi,xi)

∂x1
>V ′

i (z
i − xi),∀i, j ∈ N, i 6= j,

and that each Ui j is concave. If s ∈ S is a strongly pairwise stable equilibrium and
sii > 0,∀i ∈ N, then si j,s ji > 0, ∀i, j ∈ N, i 6= j.

Proof. The proof of Proposition 1 applies here. �

Remark 4. If the functions Vi satisfy limz→0+ V ′
i (z) = +∞, then sii > 0 must hold at

any equilibrium.
Remark 5. The main lesson of Propositions 1 and 2 is not that Pareto optimal networks
are always complete, or that strongly stable equilibria have complete networks. Utili-
ties from some links may be so low that these links are not formed either for efficiency
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or for equilibrium reasons. The lesson of these propositions is that network structures
that have complete components often appear as efficient solutions or as equilibrium
networks of a strongly pairwise stable equilibrium.

However, one can easily verify that if utility functions have the following Cobb-
Douglas form, then any Pareto optimal or strongly pairwise stable equilibrium must
have a complete network:

ui(s) = ∑
k 6=i

piksai
iksbi

ki + cis
di
ii ,

where all parameters are strictly positive, ai +bi < 1, and di < 1.
In network literature efficiency is usually defined by using the utilitarian welfare

function: those strategy profiles that maximize the sum of utilities are efficient. While
such strategy profiles are Pareto optimal, not all Pareto optimal profiles satisfy this
efficiency criterion.

If the functions Ui j are concave, then the utility functions ui are concave on a sim-
plex. In such a case each Pareto optimal strategy profile maximizes a weighted sum of
players’ utilities. The (positive) weights depend on the profile in question. If also the
functions Vi satisfy limz→0+ V ′

i (z) =+∞, then sii > 0 must hold at every Pareto optimal
s, for all i.
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Appendix

Proof of Theorem 1. (⇐) A reciprocal equilibrium s is nontrivial if si j = s ji > 0 for
at least two players i, j. Let N1, . . . ,Nk be the complete components of the equilibrium
network. If Nt has m ≥ 2 members, then there exists x = si j, i, j ∈ Nt such that

∂U(x,x)
∂x1

−V ′(1− (m−1)x)≥ 0.

Since V is concave, the inequality (11) holds for this x.
(⇒) Suppose that inequality (11) holds. Let m be the largest number, m ≤ n, such

that
∂U(z,z)

∂x1
−V ′(1− (m−1)z)≥ 0

holds for some z ∈ (0,1/(m− 1)]. Clearly m ≥ 2. Either there exists z < 1/(m− 1)
such that this inequality is actually an equality, or else the inequality is satisfied by
z = 1/(m−1).

If m = n, then si j = z for all i, j ∈ N, j 6= i, is a reciprocal equilibrium with a
complete network. If m < n, then let k be the largest integer such that km ≤ n. Choose
k disjoint subsets Nt of N such that |Nt | = m for all t = 1, . . . ,k. If the union of these
subsets does not cover N, then let Nk+1 be the residual subset.

Define s ∈ S by setting si j = z for all i, j ∈ Nt , j 6= i, t = 1, . . . ,k (and also for
i, j ∈ Nk+1 if this subset is nonempty) defines a nontrivial reciprocal equilibrium such
that subsets Nt are complete components of the equilibrium network. �

Proof of Theorem 2. Since G is anonymous, ui = Ui +Vi. By assumption, if all
players have the same utility function ui, there is a symmetric equilibrium si such that
the resulting network is complete. Since ui has constant derivative on the diagonal and
Vi is strictly concave and increasing, the symmetric equilibrium si is unique. If every si

is such that si
jk = 1/(n−1), we are done. So we may assume that s1 is the equilibrium

in which s1
i j = x1 takes the smallest value, i 6= j, and x1 < 1/(n− 1). Note that there

may be another equilibrium sk such that sk
i j = x1.

Construct a reciprocal equilibrium recursively as follows.
Step 1. Let N1 be the subset of players for whom the following first order condition
holds:

∂Ui(x1,x1)

∂x
=V ′

i

1− (n−1)x1. (A1)

By assumption, |N1| ≥ 1. If N1 = N, the recursion ends. If |N1|< n, then there exists at
least one player for whom the left hand side of equation (A1) is greater than the right
hand side.
Step 2. Let x2 ∈ (0,1) be the least number such that x1 < x2 and the following weak
inequality is satisfied for at least one player:

∂Ui(x2,x2)

∂x1
≥V ′

i

1−n1x1 − (n−n1 −1)x2. (A2)
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Since the derivative of Ui is constant on the diagonal and Vi is strictly concave, such
an x2 exists uniquely. Let N2 be the set of players for whom equation (A2) holds. If
|N1|+ |N2| = n, the recursion ends, because N1 ∩N2 = /0. If |N1|+ |N2| < n, continue
the recursion to Step 3. Since there are n players, there is Step k, k > 2, as follows.

Step k. Let xk ∈ (0,1) be the least number such that xk−1 < xk and the following weak
inequality is satisfied for at least one player:

∂Ui(xk,xk)

∂x
≥V ′

i

1−∑

t<k
ntxt − (nk −1)xk. (A3)

By assumption and the previous Steps, such a number xk exists uniquely. The sub-
set Nk of players for whom equation (A3) holds, satisfies |N1|+ · · ·+ |Nk| = n and
{N1, . . . ,Nk} is a partition of N.

Given player i ∈ N, let m be such that i ∈ Nm. Define si j = xt for all j 6= i such
that j ∈ Nt and t < m. For j 6= i such that j ∈ Nt and m ≤ t, let si j = xm. Let sii =
1−∑t<m ntxt −


∑m≤t nt


−1


xm.

By construction s is a reciprocal equilibrium such that the resulting network is
complete. �

Proof of Theorem 4. Denote the set of “types” of players by T = P ×C. Given
any type t = (p,c) ∈ T , if all players had this type, then by assumption there exists a
symmetric interior equilibrium st satisfying

p
c

∂U(xt ,xt)

∂x1
= 1

where st
i j = xt and st

ii = 1− (n−1)xt for all i, j ∈ N, j 6= i. Since derivative is strictly
decreasing on the diagonal, these symmetric equilibria can be ordered so that xt > xt ′

iff p/c > p′/c′, where t = (p,c) and t ′ = (p′,c′).
Let p and p be the greatest and least elements, respectively, of the interval P. Define

analogously c and c. So the symmetric equilibrium corresponding to the type t = (p,c)
has the largest xt , denoted by x. The symmetric equilibrium corresponding to the type
t = (p,c) has the least xt , denoted by x.

Suppose that there are k different types t1, . . . , tk ∈ T present in the player set N.
Let Nm consists of all players whose type is tm,m = 1, . . . ,k.

Let us construct an equilibrium s with a complete network such that players in the
same subset Nm treat each other reciprocally.

Step 1. Set sii = ytm
, and si j = xtm

, for all i, j ∈ Nm, for all m = 1, . . . ,k. Note that
the first order conditions of an interior equilibrium are satisfied by these choices. The
values xtm

and ytm
are the same as in the symmetric equilibrium stm

.

Step 2. Take any players i ∈ Nm and j ∈ Nh, m 6= h. Consider a two-person game with
strategic complements between i and j. Let tm = (p,c) and th = (p′c′). Let bt denote
the best reply function of type t = tm, th against opponent’s choices x ∈ [x,x]. The best
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replies for these types (unique by strict concavity of U(·,x)) satisfy

p′

c
∂U(btm

(x),x)
∂x1

= 1 =
p
c′

∂U(bth
(x),x)

∂x1
.

If p′/c = p/c′, then best replies are the same. If p′/c < p/c′, then btm
(x)< bth

(x).
Since p/c ≤ p′/c < p/c′ ≤ p/c, we have also x ≤ bt(x) ≤ bt(x) ≤ x for both types
t = tm, th. This holds since bilateral strategic complements implies bt(x) ≤ bt(x) (in-
creasing best reply function). Strictly decreasing derivative on the diagonal implies
x ≤ bt(x) and bt(x)≤ x, because bt(xt) = xt . But then by Tarski’s fixed point theorem
the mapping (xm,xh)−→ (btm

(xh),bth
(xm)) on [x,x]× [x,x] has a fixed point (xmh,xhm).

Consider the game between all players in the set Nm ∪ Nh. Then note that the
choices ytm

,xtm
,xmh for players in Nm and the choices yth

,xth
,xhm for players in Nh

form an equilibrium, since the resource constraints are satisfies by the definition of the
symmetric equilibria st1

, . . . ,stk
, and the payoff of any player i is additively separable

w.r.t. his opponents.
Since the types tm and th were chosen arbitrarily, we have solved an equilibrium

for the whole game. To see this, take any player i, and assume that i ∈ Nm. Then his
choices satisfy the resource constraint:

ytm
+ |Nm −1|xtm

+ ∑
h6=m

|Nh|xmh = 1.

Since the first order conditions for maximum satisfied, we are done. �

Proof of Theorem 5. Let the “type set” be T =P×C. Suppose that there are k different
types t1, . . . , tk ∈ T . Let Nm consist of all players whose type is tm,m = 1, . . . ,k. We
construct an equilibrium s such that players in the same subset Nim behave reciprocally.

Step 1. Suppose i, j ∈ Nm, so they both have the type tm = (pm,cm). Let btm
(z) denote

the unique best reply of either player to z ∈ [0,1/(n−1)]. By assumption btm
(1/(n−

1)) ≤ 1/(n−1). If equality holds, then xtm
= 1/(n−1) is a reciprocal equilibrium in

the game with player set Nm.
Suppose btm

(1/(n−1)) < 1/(n−1). Let I∗ = {z | btm
(y) < y,∀y ∈ [z,1/(n−1)]}

and x∗ = inf I∗. Note that x∗ exists since 1/(n−1)∈ I∗. We want to show that btm
(x∗)=

x∗.
By bilateral strategic substitutes, btm

(1/(n−1)< btm
(z) for all z ∈ I∗,z < 1/(n−1)

and by assumption btm
(1/(n−1))> 0. By the Theorem of the maximum, the best reply

btm
(z) is a continuous function on [xm−ε,1/(n−1)], for any ε > 0 such that x∗−ε > 0.

By continuity, btm
(x∗)≤ x∗. Again by continuity and the definition of I∗, this inequality

cannot be strict, so btm
(x∗) = x∗. A reciprocal equilibrium in the game with player set

Nm is obtained by setting si j = x∗ ≡ xtm
for all i, j ∈ Nm, i 6= j.

Step 2. Suppose i ∈ Nm and j ∈ Nh, m 6= h. Let tm = (p,c) and th = (p′,c′). If
p′/c = p/c′, then the choices given in Step 1 apply. Given x ∈ [0,1/(n−1)], the best
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replies satisfy
p′

c
∂U(btm

(x),x)
∂x1

= 1 =
p
c′

∂U(bth
(x),x)

∂x1
.

Now btm
(x) < bth

(x) because U(·,x) is strictly concave function, and because p′/c <
p/c′.

Consider the function f (x) = bth
(btm

(x)) on [btm
(1/(n−1)),1/(n−1)]. This func-

tion is continuous, and f (x)≤ 1/(n−1) for all x. At x = bi(1/(n−1)), f (x)≥ x, since
both best replies are decreasing functions. Hence there is a fixed point xhm = f (xhm).
But then xhm is the best reply of player j against btm

(xhm) = xmh, which in turn is the
best reply of player i against xhm.

Therefore s ji = xhm,si j = xmh forms an equilibrium when the player set is Nm ∪Nh.
Since the types tm and th were chosen arbitrarily, we have solved an equilibrium

for the whole game. To see this, take any player i, and assume that i ∈ Nm. Then his
choices satisfy the resource constraint:

|Nm −1|xtm
+ ∑

h6=m
|Nh|xmh ≤ 1.

Define sii = ytm
so that the resource constraint is satisfied as equality. Since the first

order conditions for maximum satisfied, we are done. �
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